Перейти к публикации
iT4iT.CLUB

Рекомендованные сообщения

Здравствуйте!

Из за короткого имени сети wifi (из двух символов) возникает ошибка "Некорректный SSID домашней сети"

Подскажите пожалуйста как решить данную проблему.

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

@pvspec доброе время суток.

В файле index.htm найдите строку

function checkSSID(ssid) { return ssid.match(/^[a-z0-9_. -]{3,30}$/i); }

замените её на

function checkSSID(ssid) { return ssid.match(/^[a-z0-9_. -]{2,30}$/i); }

 

  • Thanks 1

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Добрый день, возможно как-то хранить данные графика во SPIFFS чтобы после перезагрузки модуля они не исчезали? 

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

@Сергій Артеменко доброе время суток.

Это возможно. Один из вариантов, это добавить в планировщик задач новое задание, которое будет, например, раз в час перезаписывать определенный файл во Flash памяти и сохранять туда данные по всем точкам графика. Сами данные хранить в формате JSON. При старте микроконтроллера читать этот файл, разбирать JSON и заполнять массив в оперативной памяти. В принципе это не сложная задача, практически все необходимое уже реализовано в коде.

Из минусов можно отметить следующее:

  1. При перезагрузке точки на графике могут сдвинуться на время равное тому интервалу времени пока контроллер был выключен. Чем дольше не было питания, тем больше будет рассогласование. Это связано с тем, что контроллер не хранит отметки времени для точек на графике, отсчет идет от последней сохраненной точки с известными интервалами времени опираясь на время устройства с которого просматривается график. Это сделано для того, чтобы отказаться от учета реального времени на микроконтроллере.
  2. Любая Flash память имеет ограничение на количество циклов перезаписи, ESP8266 не исключение и число циклов составляет примерно 100000. Если перезаписывать Flash раз в час, то срок жизни будет составлять примерно чуть более 11 лет.

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Доброго время суток!

Уважаемый Автор, большое спасибо за проект , есть чему поучиться!!!

можно ли написать краткую инструкцию по подключению 2-х ds18b20,  к имеющимся 2 BME280

а то самому что-то только сломать все пока получается :(

 

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Доброе время суток.

14.01.2019 в 20:33, alex0127 сказал:

можно ли написать краткую инструкцию по подключению 2-х ds18b20,  к имеющимся 2 BME280

Да конечно, но проверить работоспособность Вам придется самостоятельно.

В первую очередь Вам понадобятся следующие библиотеки:

  1. OneWire https://github.com/PaulStoffregen/OneWire
  2. DallasTemperature https://github.com/milesburton/Arduino-Temperature-Control-Library

Скачиваем и добавляем их в Arduino IDE. Первая необходима для реализации обмена данными через шину 1 wire, а вторая представляет из себя всю необходимую реализацию для работы с датчиками серии DS18.

Теперь необходимо определиться с тем, какой порт мы задействуем под шину 1 wire, это важно т.к в проекте уже задействовано много портов, а ESP8266 очень в них ограничена. Из свободных и безопасных остался только GPIO16 (D0 на платах NodeMCU) но с ним могут быть проблемы, в любом случае это стоит проверить. Если вдруг не получится, то придется задействовать один из портов, используемых для управления нагрузкой, например, GPIO14 (D5 на платах NodeNCU). Ранее мы использовали его для управления нагрузкой по разности показаний между двумя датчиками BME280.

ВАЖНО: если с GPIO16 не получится и придется использовать GPIO14, то в основном файле программы закомментируйте вызов функции инициализации данного порта

// gpio_14();

Все необходимое для работы с DS18B20 будем описывать в файле users_bme280_x2.h т.к по всей видимости именно им Вы и пользуетесь в работе с двумя датчиками BME280.

Подключаем дополнительные библиотеки.

#include <OneWire.h>
#include <DallasTemperature.h>

Следом можно объявить все необходимые объекты для работы с шиной и датчиками. Я сразу укажу варианты для разных портов.

DallasTemperature ds18b20(new OneWire(16)); // GPIO16 (D0)
// DallasTemperature ds18b20(new OneWire(14)); // GPIO14 (D5)

Теперь доработаем функцию sensors_config так, чтобы в ней появились следующие дополнительные строки

void sensors_config() {
  /* тут описан код других датчиков */

  ds18b20.begin();  
  cron.add(cron::time_5s, [&](){ ds18b20.requestTemperatures(); }, true);
  sensors.add(T, device::in, "ds18b20_s0", [&](){ return ds18b20.getTempCByIndex(0); });
  sensors.add(T, device::in, "ds18b20_s1", [&](){ return ds18b20.getTempCByIndex(1); });
}

Пару слов о том, что мы добавили в эту функцию.

Инициализация шины 1 wire

ds18b20.begin();

Добавляем в планировщик новое задание которое будет отвечать за рассылку телеграммы по шине с целью запроса температуры у всех имеющихся датчиков. Последний параметр (true) заставит задачу отработать сразу при добавлении в планировщик.

cron.add(cron::time_5s, [&](){ ds18b20.requestTemperatures(); }, true);

Далее описываем каким способом собирать данные с датчиков

sensors.add(T, device::in, "ds18b20_s0", [&](){ return ds18b20.getTempCByIndex(0); });
sensors.add(T, device::in, "ds18b20_s1", [&](){ return ds18b20.getTempCByIndex(1); });

В данном представлении датчики объявлены как внутренние - device::in (можете объявить их как внешние device::out), и имеют идентификаторы в системе ds18b20_sX, где X это индекс датчика найденного библиотекой DallasTemperature. Эта информация будет полезна если появится необходимость вывода данных с этих датчиков на общий график.

В теории все должно заработать. Отпишитесь пожалуйста о своих результатах.

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах
6 hours ago, Kitsum said:

Да конечно, но проверить работоспособность Вам придется самостоятельно

Все работает!!! и как верно предположили заработало только на  GPIO14 (D5 на платах NodeNCU).

Но вроде как есть же еще свободные пины GPIO  1,2,3,9,10, tx rx на внешнем питании уже не нужен по идее.

Кстати сделал одну интересную ошибку когда заливал прошивку удаленно, забыл указать параметр Tools->Flash size-3m (стоял 1m)

и ESP не увидела SPIFFS  вообще , соотв  зайти в нее не удалось, пришлось снимать и идти прошивать на ББ.

Большое спасибо за поддержку!!!

PS. Ошибки идут иногда с DS18, с BME ни разу не замечал, а с DS18 раз в 5 мин проскакивает значение -127, хотя все соединения хорошие и кабель родной короткий прямо в ESP вставлен...

Изменено пользователем alex0127

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Создайте аккаунт или войдите в него для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Зарегистрировать аккаунт

Войти

Уже зарегистрированы? Войдите здесь.

Войти сейчас

  • Похожие публикации

    • Автор: Kitsum
      Просмотреть файл [esp8266] Библиотека CMD, реализует настройку микроконтроллера и управление вашей программой через терминал.
      Основная задача библиотеки, это прием пользовательских команд через UART интерфейс, их обработка и выполнение пользовательского кода, связанного с той или иной командой.
      Данная библиотека позволяет реализовать:
      Управление микроконтроллером Любую настройку, будь то WiFi, другие библиотеки или часть Вашей программы Вызывать Ваши задачи (функции) из терминала по команде и передавать им требуемые параметры Использовать контроллер в качестве шлюза между датчиками и программами на PC Внимание: любая команда, передаваемая в терминал обязана заканчиваться символом перевода строки "\n".
      Подключение библиотеки
      #include <cmd.h> Инициализация объекта, к которому мы будем обращаться для добавления команд. В качестве параметра объекту необходимо передать указатель на объект Serial или любой другой схожий по типу интерфейс.
      cmd command(&Serial); В функции Setup описываем какие команды требуется обрабатывать. Например, по команде "test" вызывать пользовательскую функцию с именем "myFunctionName". Имя пользовательской функции может быть абсолютно любым.
      void Setup() { Serial.begin(115200); command.add("test", myFunctionName); } Пользовательская функция будет вызываться каждый раз, когда по интерфейсу Serial поступит команда "test". Если команда будет передана с параметрами, то эти параметры будут переданы в качестве аргументов пользовательской функции.
      В функции loop должна находится команда вызова обработчика.
      void loop() { command.handleEvents(); } Пользовательская функция обязана соответствовать ряду требований:
      Не возвращать никакого результата (быть объявленной с типом void) Принимать в качестве первого аргумента переменную с типом byte в которой будет храниться число равное количеству переданных параметров Принимать в качестве второго параметра переменную с типом char** в которой будет храниться указатель на массив со всеми указателями (char*) на переданные параметры void myFunctionName(byte argc, char** argv) { /* ... */ } Функция всегда должна иметь такой вид, даже если не подразумевается, что ей будут передаваться какие-либо параметры.
      Чтобы перебрать все переданные параметры и вывести их в консоль, можно воспользоваться следующим примером
      void myFunctionName(byte argc, char** argv) { if (0 < argc) { for (uint8_t i = 0; i < argc; i++) { Serial.printf("%i. %s\n", i, argv[i]); } } } Пример вызова пользовательской функции без параметров и с ними
      # test No parameter was passed # test p1 p2 p3 p4 p5 0. p1 1. p2 2. p3 3. p4 4. p5 Помните, что параметры представлены в виде указателей и работать с ними нужно как с обычными переменными не получится т.к указатель содержит не значение переменной (переданный параметр), а указатель на ту область памяти микроконтроллера в которой это значение находится.
      Чтобы сравнить два значения, например, параметр под индексом 0 (идет первым в списке) с каким-либо значением в программе, воспользуйтесь функцией strcmp, которая возвращает целочисленное значение, указывающее на лексическое расхождение строк. Если строки равны, то возвращаемое значение равно 0.
      if (!strcmp(argv[0], "wifi")) { Serial.println(F("Первый аргумент WiFi")); } else { Serial.println(F("Первый аргумент НЕ WiFi!!!")); } Для копирования значения указателя в другую переменную с типом char можно воспользоваться функцией strcpy
      char myVar[20]; strcpy(myVar, argv[0]); if (myVar == "123456") { Serial.prinln(F("ok")); } Также можно обернуть указатель объектом String и получить весь функционал этого объекта, который будет содержать значение параметра
      String param1(argv[0]); // String param1 = argv[0]; Serial.printf("argv[0] length: %i\n", param1.length()); Serial.printf("argv[0] is integer?: %s\n", param1.toInt() ? "YES" : "NO"); if (param1 == "qwerty") { Serial.println(F("Hello QWERTY!")); } С библиотекой идут несколько примеров, в том числе и пример конфигурации WiFi в режиме STA.
      Автор Kitsum Добавлен 05.12.2018 Категория Библиотеки  
    • Автор: Kitsum
      Просмотреть файл [esp8266] Библиотека smartBlink, реализует умное управление штатным светодиодом, что позволяет добавить индикацию состояния вашей программы или микроконтроллера.
      Основная задача библиотеки, это добавление индикации состояния Вашей программы или микроконтроллера. Отображение состояния производится посредством светодиода. Что самое важное, работа библиотеки через прерывание, это позволяет ей поддерживать индикацию даже в то время, когда выполняется длительный код основной программы. Например, Вы можете использовать её для отображения в каком режиме сейчас работает WiFi микроконтроллера, STA или AP и т.д. Или ход выполнения какой-либо операции, например, передача данных на внешний сервер.
      Подключение библиотеки
      #include <smartBlink.h> Чтобы инициализировать управление светодиодом необходимо создать объект, через который мы буем задавать режимы работы индикации.
      smartBlink::smartBlink(byte gpio, bool on = LOW); Объекту необходимо передать два параметра, первый это номер порта, на котором находится светодиод, а второй это уровень логического сигнала, который заставит светодиод работать. Сигнал может быть низким (LOW) или высоким (HIGH), это зависит от схемотехники подключения светодиода.
      Например, штатный светодиод модуля ESP12, использующий GPIO2 (порт 2) можно объявить следующим образом.
      #define led2_pin 2 #define led2_on_signal LOW smartBlink led2(led2_pin, led2_on_signal); Теперь можно в основной программе использовать метод устанавливающий какой режим индикации использовать.
      smartBlink::setMode(mode_t mode); Например, зададим режим светодиода led2 в котором светодиод будет давать одну короткую вспышку раз в секунду.
      led2.setMode(smartBlink::mode_flash1); Режимов работы может быть несколько.
      led2.setMode(smartBlink::mode_off); led2.setMode(smartBlink::mode_flash1); led2.setMode(smartBlink::mode_flash2); led2.setMode(smartBlink::mode_flash3); led2.setMode(smartBlink::mode_flash4); led2.setMode(smartBlink::mode_burn); led2.setMode(smartBlink::mode_inhalf); Чтобы вернуть предыдущий режим индикации для ранее объявленного светодиода led2 используйте следующий метод
      led2.previous(); Благодаря работе библиотеки через прерывания по таймеру, индикация будет работать даже в тех случаях, когда выполняется долгий код.
      С библиотекой идут несколько примеров.
      Автор Kitsum Добавлен 10.12.2018 Категория Библиотеки  
    • Автор: Kitsum
      Основная задача библиотеки, это добавление индикации состояния Вашей программы или микроконтроллера. Отображение состояния производится посредством светодиода. Что самое важное, работа библиотеки через прерывание, это позволяет ей поддерживать индикацию даже в то время, когда выполняется длительный код основной программы. Например, Вы можете использовать её для отображения в каком режиме сейчас работает WiFi микроконтроллера, STA или AP и т.д. Или ход выполнения какой-либо операции, например, передача данных на внешний сервер.
      Подключение библиотеки
      #include <smartBlink.h> Чтобы инициализировать управление светодиодом необходимо создать объект, через который мы буем задавать режимы работы индикации.
      smartBlink::smartBlink(byte gpio, bool on = LOW); Объекту необходимо передать два параметра, первый это номер порта, на котором находится светодиод, а второй это уровень логического сигнала, который заставит светодиод работать. Сигнал может быть низким (LOW) или высоким (HIGH), это зависит от схемотехники подключения светодиода.
      Например, штатный светодиод модуля ESP12, использующий GPIO2 (порт 2) можно объявить следующим образом.
      #define led2_pin 2 #define led2_on_signal LOW smartBlink led2(led2_pin, led2_on_signal); Теперь можно в основной программе использовать метод устанавливающий какой режим индикации использовать.
      smartBlink::setMode(mode_t mode); Например, зададим режим светодиода led2 в котором светодиод будет давать одну короткую вспышку раз в секунду.
      led2.setMode(smartBlink::mode_flash1); Режимов работы может быть несколько.
      led2.setMode(smartBlink::mode_off); led2.setMode(smartBlink::mode_flash1); led2.setMode(smartBlink::mode_flash2); led2.setMode(smartBlink::mode_flash3); led2.setMode(smartBlink::mode_flash4); led2.setMode(smartBlink::mode_burn); led2.setMode(smartBlink::mode_inhalf); Чтобы вернуть предыдущий режим индикации для ранее объявленного светодиода led2 используйте следующий метод
      led2.previous(); Благодаря работе библиотеки через прерывания по таймеру, индикация будет работать даже в тех случаях, когда выполняется долгий код.
      С библиотекой идут несколько примеров.
    • Автор: Kitsum
      Просмотреть файл [esp8266] Библиотека Cron, реализует планировщик задач для периодического выполнения пользовательских функций.
      Основная задача библиотеки, это вызов пользовательских функций через установленный интервал времени. Библиотека работает по схожему принципу с широко известной программой Cron распространяемой в составе UNIX систем. От этой утилиты библиотека и унаследовала название.
      Библиотека работает исходя из принципов однопоточного выполнения кода в микроконтроллере. Когда обработчик библиотеки получает процессорное время, он проверяет список всех пользовательских задач в поиске задач, которые необходимо выполнить, основываясь на установленном интервале времени для каждой задачи.
      Данная библиотека предоставляет следующий функционал
      Позволяет добавлять большое количество пользовательских заданий в виде функций. Количество задач ограничено только их сложностью и свободной памятью микроконтроллера. Предоставляет возможность холодного старта задачи. Дает возможность вызова задачи при старте микроконтроллера с последующим выполнением задачи через установленный интервал времени. Поиск задачи по лексическому идентификатору. Получение время последнего вызова задачи. Обнуление интервала вызова задачи или установку нового интервала в мс. Останавливать задачу на неопределенный срок. Проверять активность задачи. Подключение библиотеки
      #include <cron.h> Пример добавление задачи, которая вызывает функцию blink_f каждую секунду
      cron.add(1000, blink_f); Добавление этой же задачи в режиме холодного старта
      cron.add(1000, blink_f, true); Добавление задачи и присвоение ей человек понятного идентификатора
      cron.add(1000, blink_f, "Blink"); Добавление задачи с холодным стартом и присвоением ей человек понятного идентификатора
      cron.add(1000, blink_f, "Blink", true); В качестве временного интервала вызова задачи необходимо указывать количество миллисекунд. Но можно воспользоваться готовыми константами.
      Фундаментальные константы
      cron::second cron::minute cron::hour cron::day Самые распространенные значения
      cron::time_1s cron::time_5s cron::time_10s cron::time_15s cron::time_30s cron::time_1m cron::time_5m cron::time_10m cron::time_15m cron::time_30m cron::time_1h cron::time_5h cron::time_10h cron::time_12h cron::time_1d С константами можно производить арифметические операции чтобы получить необходимые временные интервалы.
      cron.update("Blink", cron::time_1s); cron.update("Blink", cron::time_1s * 12); cron.update("Blink", cron::time_30s + 500); и т.д
      В функции loop должна находится команда вызова обработчика.
      void loop() { cron.handleEvents(); } Поиск задачи по установленному ранее идентификатору
      cron.find("Blink"); В ответ возвращается объект типа cronEvent который содержит все данные задачи или 0 если задача не была найдена. Можно использовать в качестве простой проверки.
      if (cron.find("Blink")) { /* … */ } Следующий метод позволяет получить время последнего вызова задачи
      uint32_t time = cron.lastRun("Blink"); В качестве параметра можно передать идентификатор с типом cronEvent полученный с помощью метода поиска задачи.
      Перезапуск таймера задачи производится следующим образом
      cron.update("Blink"); А так можно установить новый интервал вызова задачи
      cron.update("Blink", cron::time_10m); Остановка выполнения задачи
      cron.stop("Blink"); Проверка активности задачи
      bool active = cron.isActive("Blink"); С библиотекой идут несколько примеров.
      Автор Kitsum Добавлен 09.12.2018 Категория Библиотеки  
    • Автор: Kitsum
      Основная задача библиотеки, это вызов пользовательских функций через установленный интервал времени. Библиотека работает по схожему принципу с широко известной программой Cron распространяемой в составе UNIX систем. От этой утилиты библиотека и унаследовала название.
      Библиотека работает исходя из принципов однопоточного выполнения кода в микроконтроллере. Когда обработчик библиотеки получает процессорное время, он проверяет список всех пользовательских задач в поиске задач, которые необходимо выполнить, основываясь на установленном интервале времени для каждой задачи.
      Данная библиотека предоставляет следующий функционал
      Позволяет добавлять большое количество пользовательских заданий в виде функций. Количество задач ограничено только их сложностью и свободной памятью микроконтроллера. Предоставляет возможность холодного старта задачи. Дает возможность вызова задачи при старте микроконтроллера с последующим выполнением задачи через установленный интервал времени. Поиск задачи по лексическому идентификатору. Получение время последнего вызова задачи. Обнуление интервала вызова задачи или установку нового интервала в мс. Останавливать задачу на неопределенный срок. Проверять активность задачи. Подключение библиотеки
      #include <cron.h> Пример добавление задачи, которая вызывает функцию blink_f каждую секунду
      cron.add(1000, blink_f); Добавление этой же задачи в режиме холодного старта
      cron.add(1000, blink_f, true); Добавление задачи и присвоение ей человек понятного идентификатора
      cron.add(1000, blink_f, "Blink"); Добавление задачи с холодным стартом и присвоением ей человек понятного идентификатора
      cron.add(1000, blink_f, "Blink", true); В качестве временного интервала вызова задачи необходимо указывать количество миллисекунд. Но можно воспользоваться готовыми константами.
      Фундаментальные константы
      cron::second cron::minute cron::hour cron::day Самые распространенные значения
      cron::time_1s cron::time_5s cron::time_10s cron::time_15s cron::time_30s cron::time_1m cron::time_5m cron::time_10m cron::time_15m cron::time_30m cron::time_1h cron::time_5h cron::time_10h cron::time_12h cron::time_1d С константами можно производить арифметические операции чтобы получить необходимые временные интервалы.
      cron.update("Blink", cron::time_1s); cron.update("Blink", cron::time_1s * 12); cron.update("Blink", cron::time_30s + 500); и т.д
      В функции loop должна находится команда вызова обработчика.
      void loop() { cron.handleEvents(); } Поиск задачи по установленному ранее идентификатору
      cron.find("Blink"); В ответ возвращается объект типа cronEvent который содержит все данные задачи или 0 если задача не была найдена. Можно использовать в качестве простой проверки.
      if (cron.find("Blink")) { /* … */ } Следующий метод позволяет получить время последнего вызова задачи
      uint32_t time = cron.lastRun("Blink"); В качестве параметра можно передать идентификатор с типом cronEvent полученный с помощью метода поиска задачи.
      Перезапуск таймера задачи производится следующим образом
      cron.update("Blink"); А так можно установить новый интервал вызова задачи
      cron.update("Blink", cron::time_10m); Остановка выполнения задачи
      cron.stop("Blink"); Проверка активности задачи
      bool active = cron.isActive("Blink"); С библиотекой идут несколько примеров.
    • Автор: Kitsum
      Основная задача библиотеки, это прием пользовательских команд через UART интерфейс, их обработка и выполнение пользовательского кода, связанного с той или иной командой.
      Данная библиотека позволяет реализовать:
      Управление микроконтроллером Любую настройку, будь то WiFi, другие библиотеки или часть Вашей программы Вызывать Ваши задачи (функции) из терминала по команде и передавать им требуемые параметры Использовать контроллер в качестве шлюза между датчиками и программами на PC Внимание: любая команда, передаваемая в терминал обязана заканчиваться символом перевода строки "\n".
      Подключение библиотеки
      #include <cmd.h> Инициализация объекта, к которому мы будем обращаться для добавления команд. В качестве параметра объекту необходимо передать указатель на объект Serial или любой другой схожий по типу интерфейс.
      cmd command(&Serial); В функции Setup описываем какие команды требуется обрабатывать. Например, по команде "test" вызывать пользовательскую функцию с именем "myFunctionName". Имя пользовательской функции может быть абсолютно любым.
      void Setup() { Serial.begin(115200); command.add("test", myFunctionName); } Пользовательская функция будет вызываться каждый раз, когда по интерфейсу Serial поступит команда "test". Если команда будет передана с параметрами, то эти параметры будут переданы в качестве аргументов пользовательской функции.
      В функции loop должна находится команда вызова обработчика.
      void loop() { command.handleEvents(); } Пользовательская функция обязана соответствовать ряду требований:
      Не возвращать никакого результата (быть объявленной с типом void) Принимать в качестве первого аргумента переменную с типом byte в которой будет храниться число равное количеству переданных параметров Принимать в качестве второго параметра переменную с типом char** в которой будет храниться указатель на массив со всеми указателями (char*) на переданные параметры void myFunctionName(byte argc, char** argv) { /* ... */ } Функция всегда должна иметь такой вид, даже если не подразумевается, что ей будут передаваться какие-либо параметры.
      Чтобы перебрать все переданные параметры и вывести их в консоль, можно воспользоваться следующим примером
      void myFunctionName(byte argc, char** argv) { if (0 < argc) { for (uint8_t i = 0; i < argc; i++) { Serial.printf("%i. %s\n", i, argv[i]); } } } Пример вызова пользовательской функции без параметров и с ними
      # test No parameter was passed # test p1 p2 p3 p4 p5 0. p1 1. p2 2. p3 3. p4 4. p5 Помните, что параметры представлены в виде указателей и работать с ними нужно как с обычными переменными не получится т.к указатель содержит не значение переменной (переданный параметр), а указатель на ту область памяти микроконтроллера в которой это значение находится.
      Чтобы сравнить два значения, например, параметр под индексом 0 (идет первым в списке) с каким-либо значением в программе, воспользуйтесь функцией strcmp, которая возвращает целочисленное значение, указывающее на лексическое расхождение строк. Если строки равны, то возвращаемое значение равно 0.
      if (!strcmp(argv[0], "wifi")) { Serial.println(F("Первый аргумент WiFi")); } else { Serial.println(F("Первый аргумент НЕ WiFi!!!")); } Для копирования значения указателя в другую переменную с типом char можно воспользоваться функцией strcpy
      char myVar[20]; strcpy(myVar, argv[0]); if (myVar == "123456") { Serial.prinln(F("ok")); } Также можно обернуть указатель объектом String и получить весь функционал этого объекта, который будет содержать значение параметра
      String param1(argv[0]); // String param1 = argv[0]; Serial.printf("argv[0] length: %i\n", param1.length()); Serial.printf("argv[0] is integer?: %s\n", param1.toInt() ? "YES" : "NO"); if (param1 == "qwerty") { Serial.println(F("Hello QWERTY!")); } С библиотекой идут несколько примеров, в том числе и пример конфигурации WiFi в режиме STA.
  • Сейчас на странице   0 пользователей

    Нет пользователей, просматривающих эту страницу.

×